A ‘theory’ mechanism for a proof-verifier based
on first-order set theory *

Eugenio G. Omodeo! and Jacob T. Schwartz?

! University of I’Aquila, Dipartimento di Informatica omodeo@di.univaq.it
2 University of New York, Department of Computer Science, Courant Institute of
Mathematical Sciences schwartz@cs.nyu.edu

We often need to associate some highly compound meaning with a symbol. Such
a symbol serves us as a kind of container carrying this meaning, always with
the understanding that it can be opened if we need its content.

(Translated from [12, pp. 101-102])

Abstract. We propose classical set theory as the core of an automated
proof-verifier and outline a version of it, designed to assist in proof devel-
opment, which is indefinitely expansible with function symbols generated
by Skolemization and embodies a modularization mechanism named ‘the-
ory’. Through several examples, centered on the finite summation oper-
ation, we illustrate the potential utility in large-scale proof-development
of the ‘theory’ mechanism: utility which stems in part from the power of
the underlying set theory and in part from Skolemization.

Key words: Proof-verification technology, set theory, proof modularization.

1 Introduction

Set theory is highly versatile and possesses great expressive power. One can
readily find terse set-theoretic equivalents of established mathematical notions
and express theorems in purely set-theoretic terms.

Checking any deep fact (say the Cauchy integral theorem) using a proof-
verifier requires a large number of logical statements to be fed into the system.
These must formalize a line of reasoning that leads from bare set rudiments to
the specialized topic of interest (say, functional analysis) and then to a target
theorem. Such an enterprise can only be managed effectively if suitable modu-
larization constructs are available.

This paper outlines a version of the Zermelo-Fraenkel theory designed to as-
sist in automated proof-verification of mathematical theorems. This system in-
corporates a technical notion of “theory” designed, for large-scale proof-develop-
ment, to play a role similar to the notion of object class in large-scale program-
ming. Such a mechanism can be very useful for “proof-engineering”.

* E.G. Omodeo enjoyed a Short-term mobility grant of the Italian National Research Council (CNR)
enabling him to stay at the University of New York during the preparation of this work.

The theories we propose, like procedures in a programming language, have
lists of formal parameters. Each “theory” requires its parameters to meet a
set of assumptions. When “applied” to a list of actual parameters that have
been shown to meet the assumptions, a theory will instantiate several additional
“output” set, predicate, and function symbols, and then supply a list of theorems
initially proved explicitly by the user inside the theory itself. These theorems will
generally involve the new symbols.

Such use of “theories” and their application adds a touch of second-order
logic capability to the first-order system which we describe. Since set theory
has full multi-tier power, this should be all the second-order capability that is
needed.

We illustrate the usefulness of the proposed theory notion via examples rang-
ing from mere “utilities” (e.g. the specification of ordered pairs and associated
projections, and the thinning of a binary predicate into a global single-valued
map) to an example which characterizes a very flexible recursive definition
scheme. As an application of this latter scheme, we outline a proof that a fi-
nite summation operation which is insensitive to operand rearrangement and
grouping can be associated with any commutative-associative operation. This is
an intuitively obvious fact (seldom, if ever, proved explicitly in algebra texts),
but nevertheless it must be verified in a fully formalized context. Even this task
can become unnecessarily challenging without an appropriate set-theoretic sup-
port, or without the ability to indefinitely extend the formal language with new
Skolem symbols such as those resulting from “theory” invocations.

Our provisional assessment of the number of “proofware” lines necessary to
reach the Cauchy integral theorem in a system like the one which we outline is
20-30 thousand statements.

2 Set theory as the core of a proof-verifier

A fully satisfactory formal logical system should be able to digest ‘the whole of
mathematics’, as this develops by progressive extension of mathematics-like rea-
soning to new domains of thought. To avoid continual reworking of foundations,
one wants the formal system taken as basic to remain unchanged, or at any
rate to change only by extension as such efforts progress. In any fundamentally
new area work and language will initially be controlled more by guiding intu-
itions than by entirely precise formal rules, as when Euclid and his predecessors
first realized that the intuitive properties of geometric figures in 2 and 3 dimen-
sions, and also some familiar properties of whole numbers, could be covered by
modes of reasoning more precise than those used in everyday life. But mathe-
matical developments during the last two centuries have reduced the intuitive
content of geometry, arithmetic, and calculus (‘analysis’) in set-theoretic terms.
The geometric notion of ‘space’ maps into ‘set of all pairs (or triples) of real
numbers’, allowing consideration of the ‘set of all n-tuples of real numbers’ as
‘n-dimensional space’, and of more general related constructs as ‘infinite dimen-
sional’ and ‘functional’ spaces. The ‘figures’ originally studied in geometry map,

via the ‘locus’ concept, into sets of such pairs, triples, etc. Dedekind reduced
‘real number x’ to ‘set x of rational numbers, bounded above, such that every
rational not in z is larger than every rational in x’. To eliminate everything but
set theory from the formal foundations of mathematics, it only remained (since
‘fractions’ can be seen as pairs of numbers) to reduce the notion of ‘integer’
to set-theoretic terms. This was done by Cantor and Frege: an integer is the
class of all finite sets in 1-1 correspondence with any one such set. Subsequently
Kolmogorov modeled ‘random’ variables as functions defined on an implicit set-
theoretic measure space, and Laurent Schwartz interpreted the initially puzzling
‘delta functions’ in terms of a broader notion of generalized function system-
atically defined in set-theoretic terms. So all of these concepts can be digested
without forcing any adjustment of the set-theoretic foundation constructed for
arithmetic, analysis, and geometry. This foundation also supports all the more
abstract mathematical constructions elaborated in such 20th century fields as
topology, abstract algebra, and category theory. Indeed, these were expressed set-
theoretically from their inception. So (if we ignore a few ongoing explorations
whose significance remains to be determined) set theory currently stands as a
comfortable and universal basis for the whole of mathematics—cf. [5].

It can even be said that set theory captures a set of reality-derived intu-
itions more fundamental than such basic mathematical ideas as that of number.
Arithmetic would be very different if the real-world process of counting did not
return the same result each time a set of objects was counted, or if a subset of
a finite set S of objects proved to have a larger count than S. So, even though
Peano showed how to characterize the integers and derive many of their proper-
ties using axioms free of any explicit set-theoretic content, his approach robs the
integers of much of their intuitive significance, since in his reduced context they
cannot be used to count anything. For this and the other reasons listed above,
we prefer to work with a thoroughly set-theoretic formalism, contrived to mimic
the language and procedures of standard mathematics closely.

3 Set theory in a nutshell

Set theory is based on the handful of very powerful ideas summarized below. All
notions and notation are more or less standard (cf. [16]).1

— The dyadic Boolean operations N, \, U are available, and there is a null set, (),
devoid of elements. The membership relation € is available, and set nesting is
made possible via the singleton operation X — {X}. Derived from this, we
have single-element addition and removal, and useful increment/decrement
operations:

XwithY :=XU{Y}, XlessY :=X\{Y}, next(X):=X with X.

1 As a notational convenience, we usually omit writing universal quantifiers at the
beginning of a sentence, denoting the variables which are ruled by these understood
quantifiers by single uppercase Italic letters.

Unordered lists {t1,...,t,} and ordered tuples [t1,...,t,] are definable too:
in particular, {Xy,..., X, } :={X1}U---U{X,}.

— ‘Sets whose elements are the same are identical’: Following a step £ # r
in a proof, one can introduce a new constant b subject to the condition
bel < b¢r;no subsequent conclusions where b does not appear will
depend on this condition. Negated set inclusion ¢ can be treated similarly,
since X CY :=X\Y =0.

— Global choice: We use an operation arb which, from any non-null set X,
deterministically extracts an element which does not intersect X. Assuming
arb () = () for definiteness, this means that

arb X € next(X) & X NarbX =1

for all X.

— Set-formation: By (possibly transfinite) element- or subset-iteration over the
sets represented by the terms tg,t1 = t1(x0), ..., tn = tn(Z0, ..., Tn—1), we can
form the set

{6 : xocoto, xlC’ltl,...,xnCntn | (p},

where each C; is either € or C, and where e = e(xo,...,2,) and ¢ =
o(zo,...,zy) are a set-term and a condition in which the p.w. distinct vari-
ables z; can occur free (similarly, each ¢;; may involve zo,...,x;).

Many operations are readily definable using setformers, e.g.

UY i={as : mmeY,zmeca}, Y XZ:={[x1,25] : 21 €Y, 20 €72},
PY):={x:2CY}, pred(X) :=arb{y € X | next(y) = X },

where if the condition ¢ is omitted it is understood to be true, and if the
term e is omitted it is understood to be the same as the first variable inside
the braces.

— e-recursion: (“Transfinite”) recursion over the elements of any set allows one
to introduce global set operations; e.g.,

S UJ{Ult_-membs(z) : z € S} and
U{ next(rank(z)) : z€ S},

Ult_membs(S) :
rank(S) :

which respectively give the set of all “ultimate members” (i.e. elements,
elements of elements, etc.) of S and the maximum “depth of nesting” of sets
inside S.

— ‘Infinite sets exist’: There is at least one s_inf satisfying

sinf# 0 & (Vo € s_inf)({z} € s_inf) ,

so that the p.w. distinct elements b, {b}, {{b}}, {{{b}}},... belong to s_inf
for each b in s_inf.

The historical controversies concerning the choice and replacement axioms of
set theory are all hidden in our use of setformers and in our ability, after a state-
ment of the form Jy ¢ (Xy,...,X,,y) has been proved, to introduce a Skolem
function f(Xj,...,X,) satisfying the condition w(X1, X, f(X1,..., X)))

In particular, combined use of arb and of the setformer construct lets us
write the choice set of any set X of non-null pairwise disjoint sets simply as
{arby : ye X }.2

To appreciate the power of the above formal language, consider von Neu-
mann’s elegant definition of the predicate ‘X is a (possibly transfinite) ordinal’,
and the characterization of R, the set of real numbers, as the set of Dedekind
cuts (cf. [17]):

Ord(X) :

c
R : -

PX)& Vy,zeX)(yezVy=2zVzey),
QlVyeo@Bzeo)(y<2)&
(Vyeo(VeeQz<y — z€c) }\{0,Q}

X
(e

here the ordered field Q, < of rational numbers is assumed to have been defined
before R.3

4 Theories in action: First examples

Here is one of the most obvious theories one can think of:

THEORY ordered_pair()
==>(opair, car, cdr)

car(opair(X,Y)) = X

cdr(opair(X,Y)) =Y

opair(X,Y) =opair(U,V) - X =U&Y =V
END ordered_pair.

This THEORY has no input parameters and no assumptions, and returns three
global functions: a pairing function and its projections. To start its construction,
the user simply has to

SUPPOSE_THEORY ordered_pair()
==>
END ordered_pair,

then to ENTER_THEORY ordered_pair, and next to define e.g.

opair(X,Y) := { (X}, {{xX},{v,{v}}} },
car(P) := arbarb P,
cdr(P) := car(arb (P\ {arb P}) \ {arb P}).

2 Cf. [18, p. 177]. Even in the more basic framework of first-order predicate calculus,
the availability of choice constructs can be highly desirable, cf. [1].

3 For an alternative definition of real numbers which works very well too, see
E.A. Bishop’s adaptation of Cauchy’s construction of R in [2, pp. 291-297].

This makes it possible to prove such intermediate lemmas as

arb{U} =
VeZ — arb{V,Z} =V
{{X}{{X}W}}

arb opair(X,Y) =
cdr(opair(X,Y)) = car({{Y {Y}}}

Once these intermediate results have been used to prove the three theorems
listed earlier, the user can indicate that they are the ones he wants to be exter-
nally visible, and that the return-parameter list consists of opair, car, cdr (the
detailed definitions of these symbols, as well as the intermediate lemmas, have
hardly any significance outside the THEORY itself*). Then, after re-entering
the main THEORY, which is set_theory, the user can

APPLY (opair, head, tail) ordered_pair() ==>
head(opair(X,Y)) = X
tail(opair(X,Y)) =Y
opair(X,Y) =opair(U,V) - X =U&Y =V,

thus importing the three theorems into the main proof level. As written, this
application also changes the designations ‘car’ and ‘cdr’ into ‘head’ and ‘tail’.

Fig.1 shows how to take advantage of the functions just introduced to define
notions related to maps that will be needed later on.’

isimap(F) := F = {lhead(z),tail(z)] : = € F}
Svm(F') = iscmap(F) & (Vz,y € F)(head(z) = head(y) — = = y)
1.1.map(F) := Sym(F)& (Vz,y € F)(tail(z:) =tail(y) — =z = y)
F! = {[tail(z),head(z)] : = € F}
domain(F) :={head(z) : =z € F} range(F) := {tail(z) : = € F}
F{X} :={y crange(F) | [X,y] € F} Fis :=Fn (S xrange(F))
Finite(S) := =3 f(1.1.map(f) & S = domain(f) # range(f) C S)

Fig. 1. Notions related to maps, single-valued maps, and 1-1 maps

For another simple example, suppose that the theory

THEORY setformerO(e,s, p)
==>

s#£0) — {e(x): xe€s}#0

{zeslp@)}#0 — {e(x) s zeslp()}#0
END setformer0

4 A similar remark on Kuratowski’s encoding of an ordered pair as a set of the form
{{z,y},{z}} is made in [14, pp. 50-51].
5 We subsequently return to the notation [X, Y] for opair(X,Y).

has been proved, but that its user subsequently realizes that the reverse impli-
cations could be helpful too; and that the formulae

sCT — {e(x) : zes|plz)} C{e(x) : z€T|px)},
sCT&(VzeT\s)plx) — {e(@): zeslpla)}={elx): zeT|plx)}

are also needed. He can then re-enter the THEORY setformer0, strengthen the
implications already proved into bi-implications, and add the new results: of
course he must then supply proofs of the new facts.

Our next sample THEORY receives as input a predicate P = P(X,V)
and an “exception” function xcp = xcp(X); it returns a global function img =
img(X) which, when possible, associates with its argument X some Y such that
P(X,Y) holds, and otherwise associates with X the “fictitious” image xcp(X).
The THEORY has an assumption, intended to guarantee non-ambiguity of the
fictitious value:

THEORY fcn_from_pred(P, xcp)
- P(X,xcp(X)) - convenient “quard”
==>(img)
img(X) # xcp(X) <« FJvP(X,v)
P(X,V) — P(X,img(X))
END fcn_from_pred.

To construct this THEORY from its assumption, the user can simply define
img(X) :=if P(X, try(X)) then try(X) else xcp(X) end if
where try results from Skolemization of the valid first-order formula
JyVu(P(X,v) — P(X,y)),

after which the proofs of the theorems of fcn_from_pred pose no problems.
As an easy example of the use of this THEORY, note that it can be invoked
in the special form

APPLY (img) fcn_from_pred(P(X,Y) — YeX & Q(Y),
xcp(X) — X J==>-

for any monadic predicate @ (because € is acyclic); without the condition Y € X
such an invocation would instead result in an error indication, except in the
uninteresting case in which one has proved that Va = Q(z).

Here is a slightly more elaborate example of a familiar THEORY:

THEORY equivalence_classes(s, Eq)
(Vz € s)(Eq(z,2))

(vVa,y.2 € 9)(Ea(z,y) — (Ea(y.2) < Eq(z2)))
==>(quot, cl_of) - “quotient”-set and globalized “canonical embedding”

(Va,y € s)(Eq(z,y) < Eq(y,z))

(Va € s)(clof(x) € quot)
(Vb € quot)(arbb € s& clof(arbb) =b)

(Vy € s)(Eq(z,y) < clof(x) = clof(y))
END equivalence_classes.

Suppose that this THEORY has been established, and that N, Z, and the
multiplication operation * have been defined already, where N is the set of natural
numbers, and Z, intended to be the set of signed integers, is defined (somewhat
arbitrarily) as

Z:={[n,m] : n,meN|n=0V m=0}.

Here the position of 0 in a pair serves as a sign indication, and the restriction of
* to Z x Z is integer multiplication (but actually, z*y is always defined, whether
or not z,y € Z). Then the set Fr of fractions and the set Q of rational numbers
can be defined as follows:

Fro={[z,y] : 2,y €Z1y#1[0,0]},
Same frac(F, G) := (head(F) x tail(G) = tail(F) * head(G)),
APPLY (Q, Fr_to_ Q) equivalence,classes(s — Fr,

Eq(F,G) — Same_frac(F,G))==>- -

Before APPLY can be invoked, one must prove that the restriction of
Same_frac to Fr meets the THEORY assumptions, i.e. it is an equivalence re-
lation. Then the system will not simply return the two new symbols Q and
Fr_to_Q, but will provide theorems insuring that these represent the standard
equivalence-class reduction Fr/Same_frac and the canonical embedding of Fr into
this quotient. Note as a curiosity —which however hints at the type of hiding
implicit in the THEORY mechanism— that a Q satisfying the conclusions of
the THEORY is not actually forced to be the standard partition of Fr but can
consist of singletons or even of supersets of the equivalence classes (which is
harmless).

5 A final case study: Finite summation

Consider the operation X (F) or, more explicitly,

2. 2w

z€domain(F) [z,y]€F

available for any finite map F (and in particular when domain(F) = d € N, so
that = € d amounts to saying that z = 0,1,...,d—1) such that range(F') C abel,
where abel is a set on which a given operation + is associative and commutative
and has a unit element u. Most of this is captured formally by the following
THEORY:

THEORY sigma_add(abel, +, u)

(Vz,y € abel)(x+y € abel & - closure w.r.t. ...
T+y = y+a) -- ... commutative operation
u € abel & (Vx € abel)(z+u = z) -- designated unit element
(Va,y,z € abel)((z+y)+z = x+(y+2))-- associativity
==>(X) -- summation operation

Z0) =u& (Yz e N)(Vy € abel)(Z({[z,y]}) = y)
is_map(F') & Finite(F') & range(F') C abel & domain(F) CN —
YF)=X(FNG)+X(F\G) - additivity
END sigma_add.

We show below how to construct this THEORY from its assumptions,
and how to generalize it into a THEORY gen_sigma_add in which the con-
dition domain(F) C N is dropped, allowing the condition (Vz € N)(Vy €
abel)(X({[z,y]}) =y) to be simplified into (Vy € abel)(X({[X,y]}) =y). Af-
ter this, we will sketch the proof of a basic property (‘rearrangement of terms’)
of this generalized summation operation.

5.1 Existence of a finite summation operation

In order to tackle even the simple sigma_add, it is convenient to make use of recur-
sions somewhat different (and actually simpler) than the fully general transfinite
€-recursion axiomatically available in our version of set theory. Specifically, we
can write

Y(F) :=if F = () then u else tail(arb F) + X(F less arb F') end if,

which is a sort of “tail recursion” based on set inclusion.

To see why such constructions are allowed we can use the fact that strict
inclusion is a well-founded relation between finite sets, and in particular that it
is well-founded over { f C N x abel | Finite(f) }: this makes the above form of
recursive definition acceptable.

In preparing to feed this definition —or something closely equivalent to it—
into our proof-verifier, we can conveniently make a détour through the following
THEORY (note that in the following formulae Ord(X) designates the predicate
‘X is an ordinal’—see end of Sec.3):

THEORY well_founded_set(s, Lt)

(VtCs)(t#0 — Imet)(Vu € t)-Lt(u,m))

-- Lt is thereby assumed to be irreflexive and well-founded on s
==>(orden)

(vz,y € 5)((Lt(.y) — ~Lt(y,2)) &~ Lt(z,2))

sC{orden(y) : y€ X} < orden(X)=s

orden(X) #s < orden(X) €s

Ord(U) & Ord(V) & orden(U) # s # orden(V) —

(Lt(orden(U),orden(V)) — Ue V)

{ues!Lt(u,orden(V))} C {orden(z) : z €V}
Ord(U) & Ord(V) & orden(U) #s # orden(V) & U #V —
orden(U) # orden(V)
30(Ord(o) & s ={orden(z) : z €0} &
1.1.map({[z,orden(z)] : = € o}))
END well_founded_set.

Within this THEORY and in justification of it, orden can be defined in two
steps:

Minrel(T) := if 0 #T Csthenarb{m e T | (Vx € T)-Lt(z,m) }
else s end if,
orden(X) := Minrel(s\ {orden(y) : y€ X}),

after which the proof of the output theorems of the THEORY just described
will take approximately one hundred lines.

Next we introduce a THEORY of recursion on well-founded sets. Even
though the definition of X' only requires much less, other kinds of recursive
definition benefit if we provide a generous scheme like the following:

THEORY recursive_fcn(dom, Lt, a, b, P)
(Vt Cdom)(t# 0 — (3m € t)(Vu € t)-Lt(u,m))
-- Lt is thereby assumed to be irrefliexive and well-founded on dom
==>(rec)
(Vv e dom)(rec(v) =
a(v,{ b(v,w,rec(w)) : w € dom | Lt(w,v) & P(v,w,rec(w)) }))
END recursive_fen.

The output symbol rec of this THEORY is easily definable as follows:

G(X) := (orden), { b(orden(X),orden(y),G(y)) : y € X |
Lt(orden(y),orden(X)) & P(orden(X),orden(y), G(y)) }) ,
rec(V) := G(indexof(V));

here orden results from an invocation of our previous THEORY well_founded_set,
namely

APPLY (orden) well_founded_set(s — dom, Lt(X,Y) s Lt(X,Y))==>---;

also, the restriction of index_to to dom is assumed to be the local inverse of the
function orden. Note that the recursive characterization of rec in the theorem
of recursive_fcn is thus ultimately justified in terms of the very general form of
€-recursion built into our system, as appears from the definition of G.

Since we cannot take it for granted that we have an inverse of orden, a second
auxiliary THEORY, invokable as

APPLY (index_of) bijection(f(X) ~ orden(X),d + ol,r s dom)==>---,

is useful. Here ol results from Skolemization of the last theorem in well_founded_set.
The new THEORY used here can be specified as follows:

THEORY bijection(f, d, r)
11 map({[z,f(z)] : v €d}) &r={f(z) : 2 €d}
f(X)er — X €d-- convenient “guard”
==>(finv)
Yer — f(finv()) =Y
Yer — finv(Y) ed
Xed o f(X)er
Xed — finv(f(X)) =X
(finv(Y) € d& Ja(f(x ><—>Y€r

)y =Y
d= {finv(y) : y € r} & L-1map({[y.finv(y)] : y €r})
END bijection.

This little digression gives us one more opportunity to show the interplay

between theories, because one way of defining finv inside bijection would be as
follows:

APPLY (finv) fcn_from_pred(
PY,X)—f(X)=Y &d#0,
e(Y)— if Y € r then d else arbd end if)==> -,

where fcn_from_pred is as shown in Sec.4.
We can now recast our first-attempt definition of X as

APPLY(X) recursive_fen(
dom — { f C N x abel | is_map(f) & Finite(f)} ,
LW, V)W CV&W £V,
a(V,Z) — if V. = () then u else tail(arb V) + arb Z end if,
b(V,W,Z) — Z
P(V,W,Z)+— W =V lessarb V):=>--- ,

whose slight intricacy is the price being paid to our earlier decision to keep the
recursive definition scheme very general.

We skip the proofs that X () = u and (V2 € N)(Vy € abel)(X({[z,y]}) =
Y), which are straightforward. Concerning additivity, assume by absurd hypoth-
esis that f is a finite map with domain(f) € N and range(f) C abel such that
X(f) #£ X(fng)+ X(f\ g) holds for some g, and then use the following tiny but
extremely useful THEORY (of induction over the subsets of any finite set)

THEORY finite_induction(n, P)

Finite(n) & P(n)
==>(m)

mCn&Pm) & (VECm)(k#m — —P(k))
END finite_induction,

to get an inclusion-minimal such map, f0, by performing an

APPLY (f0) finite_induction(n — f,
P(F) — 3g(E(F) # D(Fng)+ E(F\g)))==>--- .

Reaching a contradiction from this is very easy.

5.2 Generalized notion of finite summation

Our next goal is to generalize the finite summation operation Y¥'(F') to any finite
map F with range(F') C abel. To do this we can use a few basic theorems on
ordinals, which can be summarized as follows. Define

min_el(T,S) := if S C T then S else arb (S\ T) end if,
enum(X,S) := min_el({enum(y) : y € X},S5),

for all sets S, T (a use of €-recursion quite similar to the construction used in-
side the THEORY well_founded_set!%). Then the following enumeration theorem
holds:

EIO(Ord(o) & S ={enum(z,8) : €0}
& (Va,y €0)(x#y — enum(z,S) # enum(y, S))) .
From this one gets the function ordin by Skolemization.
Using the predicate Finite of Fig.1, and exploiting the infinite set s_inf ax-

iomatically available in our version of set theory, we can give the following defi-
nition of natural numbers:

N :=arb { z € next(ordin(s_inf)) | - Finite(z) } .
These characterizations of Finite and N yield

X €N « ordin(X) = X & Finite(X) ,
Finite(X) < ordin(X) € N,
Finite(F') — Finite(domain(F)) & Finite(range(F)) .
Using these results and working inside the THEORY gen_sigma_add, we can
obtain the generalized operation X by first invoking

APPLY (o) sigma_add(abel — abel,+ - +,u+s u)==> -
and then defining:

X(F) :=a({[z,y] : € ordin(domain(F)), y € range(F)
| [enum(z,domain(F)),y] € F}) .

We omit the proofs that Y(#) = u, (Vy € abel)(X({[X,4]}) = v), and
Y(F)=X(FNnG)+X(F\G), which are straightforward.

5 This is more than just an analogy: we could exploit the well-foundedness of € to
hide the details of the construction of enum into an invocation of the THEORY
well_founded_set.

5.3 Rearrangement of terms in finite summations

To be most useful, the THEORY of X needs to encompass various strong
statements of the additivity property. Writing

&(F) = is_-map(F) & Finite(domain(F)) & range(F) C abel,
UV(PX)=X=UP & (VhveP)b#v — bnv=>0)

for brevity, much of what is wanted can be specified e.g. as follows:

THEORY gen_sigma_add(abel, +, u)

(Va,y € abel)(a+y € abel & - closure w.r.t. ...

Ty = y+x) -- ... commutative operation
u € abel & (V& € abel)(z+u = z) -- designated unit element
(Va,y,z € abel)((z+y)+z = z+(y+z))— associativity

==>(X) -- summation operation

(0) =u& (Vy € abel)(Z({[X,y]}) = y)
P(F) — X(F) € abel
H(F)— X(F)=X(FNG)+X(F\G)-- additivity
(F)&W(PF) — 2(F)=3({lg,2(9)] : g€ P})
&(F) & ¥(P,domain(F)) — X(F)=x({[b,2(F,)] : beP})
P(F) & Svm(G) & domain(F') = domain(G) —

Y(F)= E({ [z, E(F“G—l{w})] : z € range(G) })
END gen_sigma_add.

A proof of the last of these theorems, which states that X' is insensitive to
operand rearrangement and grouping, is sketched below.

Generalized additivity is proved first: starting with the absurd hypothesis
that specific f, p exist for which

(f) &W(p,f) & 2(f) # 2({lg.2(9)) - g€p})

holds, one can choose an inclusion-minimal such p referring to the same f and
included in the p chosen at first, by an invocation

APPLY (p0) finite,induction(n—p,
PQ) — ¥ (Q.f)&X(F)#2({[9.2(g)] : g€Q}))==>"--

From this, a contradiction is easily reached.
The next theorem, namely

&(F) & w(P,domain(F)) — X(F)=2({[b,2(F,)] : beP})

follows since ¥(P, domain(F)) implies ¥({F}, : b€ P}, F).
Proof of the summand rearrangement theorem seen above is now easy, be-
cause

Svm(G) & D = domain(G) — #({G Yz} : z € range(G) }, D)

holds for any D and hence in particular for D = domain(F).

The above line of proof suggests a useful preamble is to construct the follow-
ing theory of ¥:

THEORY is_partition(p, s)
==>(flag) -- this indicates whether or not s is partitioned by p
flag < s=UJp& (Vbv)(b£v — bNv=10)
flag & Finite(s) — Finite(p)
flag& s =domain(F) & Q={F, : bep} - F=UQ &
(VfgeQ)(f#g — fng=10)
Svm(G) & s = domain(G) & p = { Gy} : y € range(G) } — flag
END is_partition.

6 Related work

To support software design and specification, rapid prototyping, theorem prov-
ing, user interface design, and hardware verification, various authors have pro-
posed systems embodying constructs for modularization which are, under one
respect or another, akin to our THEORY construct. Among such proposals lies
the OBJ family of languages [15], which integrates specification, prototyping,
and verification into a system with a single underlying equational logic.

In the implementation OBJ3 of OBJ, a module can either be an object or a
theory: in either case it will have a set of equations as its body, but an object
is executable and has a fixed standard model whereas a theory describes non-
executable properties and has loose semantics, namely a variety of admissible
models. As early as in 1985, OBJ2 [13] was endowed with a generic module
mechanism inspired by the mechanism for parameterized specifications of the
Clear specification language [3]; the interface declarations of OBJ2 generics were
not purely syntactic but contained semantic requirements that actual modules
had to satisfy before they could be meaningfully substituted.

The use of OBJ for theorem-proving is aimed at providing mechanical assis-
tance for proofs that are needed in the development of software and hardware,
more than at mechanizing mathematical proofs in the broad sense. This partly
explains the big emphasis which the design of OBJ places on equational reason-
ing and the privileged role assigned to universal algebra: equational logic is in
fact sufficiently powerful to describe any standard model within which one may
want to carry out computations.

We observe that an equational formulation of set theory can be designed [11],
and may even offer advantages w.r.t. a more traditional formulation of Zermelo-
Fraenkel in limited applications where it is reasonable to expect that proofs can
be found in fully automatic mode; nevertheless, overly insisting on equational
reasoning in the realm of set theory would be preposterous in light of the highly
interactive proof-verification environment which we envision.

We like to mention another ambitious project, closer in spirit to this paper
although based on a sophisticated variant of Church’s typed lambda-calculus

[6]: the Interactive Mathematical Proof System (IMPS) described in [10]. This
system manages a database of mathematics, represented as a collection of inter-
connected axiomatic “little theories” which span graduate-level parts of analysis
(about 25 theories: real numbers, partial orders, metric spaces, normed spaces,
etc.), some algebra (monoids, groups, and fields), and also some theories more
directly relevant to computer science (concerning state machines, domains for
denotational semantics, and free recursive datatypes). The initial library caters
for some fragments of set theory too: in particular, it contains theorems about
cardinalities. Mathematical analysis is regarded as a significant arena for testing
the adequacy of formalizations of mathematics, because analysis requires great
expressive power for constructing proofs.

The authors of [10] claim that IMPS supports a view of the axiomatic method
based on “little theories” tailored to the diverse fields of mathematics as well
as the “big theory” view in which all reasoning is performed within a single
powerful and highly expressive set theory. Greater emphasis is placed on the
former approach, anyhow: with this approach, links —“conduits”, so to speak,
to pass results from one theory to another— play a crucial role. To realize such
links, a syntactic device named “theory interpretation” is used in a variety of
ways to translate the language of a source theory to the language of a target
theory so that the image of a theorem is always a theorem: this method enables
reuse of mathematical results “transported” from relatively abstract theories to
more specialized ones.

One main difference of our approach w.r.t. that of IMPS is that we are will-
ing to invest more on the “big theory” approach and, accordingly, do not feel
urged to rely on a higher-order logic where functions are organized according to
a type hierarchy. It may be contended that the typing discipline complies with
everyday mathematical practice, and perhaps gives helpful clues to the auto-
mated reasoning mechanisms so as to ensure better performance; nevertheless,
a well-thought type-free environment can be conceptually simpler.

Both OBJ and IMPS attach great importance to interconnections across
theories, inheritance to mention a most basic one, and “theory ensembles” to
mention a nice feature of IMPS which enables one to move, e.g., from the for-
mal theory of a metric space to a family of interrelated replicas of it, which
also caters for continuous mappings between metric spaces. As regards theory
interconnections, the proposal we have made in this paper still awaits being
enriched.

The literature on the OBJ family and on the IMPS system also stresses
the kinship between the activity of proving theorems and computing in general;
even more so does the literature on systems, such as Nuprl [8] or the Calculus
of Constructions [9], which rely on a constructive foundation, more or less close
to Martin-Lo6f’s intuitionistic type theory [19]. Important achievements, and in
particular the conception of declarative programming languages such as Prolog,
stem in fact from the view that proof-search can be taken as a general paradigm
of computation. On the other hand, we feel that too little has been done, to
date, in order to exploit a “proof-by-computation” paradigm aimed at enhanc-

ing theorem-proving by means of the ability to perform symbolic computations
efficiently in specialized contexts of algebra and analysis (a step in this direction
was moved with [7]). Here is an issue that we intend to deepen in a forthcoming

paper.

7 Conclusions

We view the activity of setting up detailed formalized proofs of important theo-
rems in analysis and number theory as an essential part of the feasibility study
that must precede the development of any ambitious proof-checker. In mathe-
matics, set theory has emerged as the standard framework for such an enter-
prise, and full computer-assisted certification of a modernized version of Prin-
cipia Mathematica should now be possible. To convince ourselves of a verifier
system’s ability to handle large-scale mathematical proofs —and such proofs
cannot always be avoided in program-correctness verification—, it is best to
follow the royal road paved by the work of Cauchy, Dedekind, Frege, Cantor,
Peano, Whitehead—Russell, Zermelo—Fraenkel-von Neumann, and many others.

Only one facet of our work on large-scale proof scenarios is presented in
this paper. Discussion on the nature of the basic inference steps a proof-verifier
should (and reasonably can) handle has been omitted to focus our discussion on
the issue of proof modularization. The obvious goal of modularization is to avoid
repeating similar steps when the proofs of two theorems are closely analogous.
Modularization must also conceal the details of a proof once they have been fed
into the system and successfully certified.

When coupled to a powerful underlying set theory, indefinitely expansible
with new function symbols generated by Skolemization, the technical notion
of “theory” proposed in this paper appears to meet such proof-modularization
requirements. The examples provided, showing how often the THEORY con-
struct can be exploited in proof scenarios, may convince the reader of the utility
of this construct.

Acknowledgements

We thank Ernst-Erich Doberkat (Universitdt Dortmund, D), who brought to our
attention the text by Frege cited in the epigraph of this paper. We are indebted
to Patrick Cegielski (Université Paris XII, F) for helpful comments.

References

1. A. Blass and Y. Gurevich. The logic of choice. J. of Symbolic Logic, 65(3):1264-1310,
2000.

2. D. S. Bridges. Foundations of real and abstract analysis. Springer-Verlag, Graduate
Texts in Mathematics vol.174, 1997.

3. R. Burstall and J. Goguen. Putting theories together to make specifications. In
R. Reddy, ed, Proc. 5™ International Joint Conference on Artificial Intelligence.
Cambridge, MA, pp. 1045-1058, 1977.

4. R. Caferra and G. Salzer, editors. Automated Deduction in Classical and Non-
Classical Logics. LNCS 1761 (LNAI). Springer-Verlag, 2000.

5. P. Cegielski. Un fondement des mathématiques. In M. Barbut et al., eds, La
recherche de la vérité. ACL — Les éditions du Kangourou, 1999.

6. A. Church. A formulation of the simple theory of types. J. of Symbolic Logic,
5:56—68, 1940.

7. E. Clarke and X. Zhao. Analytica—A theorem prover in Mathematica. In D. Kapur,
ed, Automated Deduction—CADE-11. Springer-Verlag, LNCS vol. 607, pp. 761-765,
1992.

8. R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl devel-
opment system. Prentice-Hall, Englewood Cliffs, NJ, 1986.

9. Th. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76(2/3):95-120, 1988.

10. W. M. Farmer, J. D. Guttman, F. J. Thayer. IMPS: An interactive mathematical
proof system. J. of Automated Reasoning, 11:213-248, 1993.

11. A. Formisano and E. Omodeo. An equational re-engineering of set theories. In
Caferra and Salzer [4, pp. 175-190].

12. G. Frege. Logik in der Mathematik. In G. Frege, Schriften zur Logik und Sprach-
philosophie. Aus dem Nachlafl herausgegeben von G. Gabriel. Felix Meiner Verlag,
Philosophische Bibliothek, Band 277, Hamburg, pp. 92-165, 1971.

13. K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, J. Meseguer. Principles of
OBJ2. Proc. 12® annual ACM Symp. on Principles of Programming Languages
(POPL’85), pp. 55-66, 1985.

14. R. Godement. Cours d’algebre. Hermann, Paris, Collection Enseignement des
Sciences, 3" edition, 1966.

15. J. A. Goguen and G. Malcolm. Algebraic semantics of imperative programs. MIT,
1996.

16. T. J. Jech. Set theory. Springer-Verlag, Perspectives in Mathematical Logic, 2"¢
edition, 1997.

17. E. Landau. Foundation of analysis. The arithmetic of whole, rational, irrational
and complex numbers. Chelsea Publishing Co., New York, 2™¢ edition, 1960.

18. A. Levy. Basic set theory. Springer-Verlag, Perspectives in Mathematical Logic,
1979.

19. P. Martin-Lof. Intuitionistic type theory. Bibliopolis, Napoli, Studies in Proof
Theory Series, 1984.

