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JACOB THEODORE SCHWARTZ

January 9, 1930–March 2, 2009

BY  MARTIN DAVIS  AND EDMOND  SCHONBERG

Jacob theodore (“jack”) schwartz was born on January 9, 
1930, in the Bronx, New York City. His parents were secular 

Jews, immigrants to the United States, his mother from 
Germany and his father from Hungary. His father worked as a 
furrier, part of the vibrant women’s clothing industry in New 
York. As a child Jack was a precocious omnivorous reader. He 
attended Stuyvesant High School, one of the special public 
schools provided in New York City for gifted students. During 
his high school years he became passionate about chemistry, 
and looked forward to a career as a scientist. He became close 
friends with the future physicist David Finkelstein, a friendship 
that was to endure for Jack’s entire life. Soon after entering 
City College at the age of 15, his interest shifted decisively 
to mathematics. City College, with its tuition still free in 
those years, and classes reachable from home by a five-cent 
subway ride, provided a path to professional careers for many 
young people whose families were of very modest means.  
E. L. Post and B. P. Gill were inspiring teachers (despite very 
difficult working conditions), and there was real excitement 
about mathematics among the striking number of Jack’s 
fellow students who were to go on to successful careers in 
the mathematical sciences. At the “mathematician’s table” in 
the crowded, noisy student cafeteria, students were working 
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on problems, setting challenges, playing chess, and teaching 
one another mathematics.

Jack attacked his new field with an intensity and gusto that 
were to become typical. Not content with the undergraduate 
curriculum, he began working his way through the newly 
published volumes in the American Mathematical Society’s 
Colloquium series: Solomon Lefschetz’s Algebraic Topology and 
Andre Weil’s Foundations of Algebraic Geometry. In his later life 
he often repeated the pattern of rapidly absorbing the most 
advanced current literature of an area that was new to him 
and then making his own contribution to it.

	 Jack began his graduate studies at Yale in 1949. His 
research interest settled then and remained for some years 
in functional analysis, especially in the theory of linear opera-
tors. Nelson Dunford was his dissertation adviser and later 
his continuing collaborator. During his graduate student 
days, Jack married Sandra Wiener. He remained at Yale for 
several years after receiving the doctorate and moved to New 
York University in 1957, where he continued at the Courant 
Institute of Mathematical Sciences until his retirement in 
2005. One fruit of Jack’s collaboration with Dunford was the 
following Dunford-Schwartz Theorem:

Let T be a linear operator from L1 to L1 with ||T||1 ≤ 1  
and ||T||∞ ≤ 1. Then, for every f ∈ L1, limn→∞  

1-n∑n
k
-
=

1
0  T

k f exists 
almost everywhere.1 

But their collaboration will especially be remembered 
for their monumental three-volume treatise Linear Operators 
(1958, 1963, 1970) for which the American Mathematical 
Society awarded them the Leroy P. Steele Prize for expository 
writing. The underlying conceptual framework of this work is 
a treatment of the basic structures of analysis in sufficiently 
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general terms to enable applications of functional analysis 
to various aspects of classical analysis as well as enable a 
focus on contemporary topics. Thus the Lebesgue integral 
is developed for vector-valued functions, and the classical 
Cauchy complex analysis of analytic functions is generalized 
to analytic functions with values in a complex Banach algebra 
defined on a domain in complex n-space. A 140-page chapter 
in the first volume is devoted to investigation of the various 
properties of a menagerie of over two dozen function spaces. 
Each chapter is followed by a section of notes that fill out the 
historical background and include various excursions from 
the main topics. The list of more than 1,000 exercises, none 
of them routine, covers a huge range of applications. 

It may not be amiss to quote from Béla Sz.-Nagy’s reviews 
of the three volumes. 

On Volume I

Although only the first of the planned…volumes has so far appeared, it can 
already be confirmed that the authors have created an extraordinarily impor-
tant and valuable work that is distinguished in particular by its monumental 
completeness, clear organization, and attractive exposition.2

On Volume II

[It] is clear that its study will from now on constitute a necessary stage for 
every analyst-to-be. The reader will be fascinated, whatever part of the book 
he studies, by the immense amount of information it offers, by the clear-
ness and simplicity of the exposition, and by the harmony of classical and 
modern in the whole presentation.3

On Volume III

The treatise of Dunford and Schwartz, now accomplished, will be, for many 
years to come, an inexhaustible source of information on modern analysis, 
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and it certainly will (as the first two parts already did) very strongly influence 
further development in this huge area of mathematical knowledge.4

Peter Lax, a friend and colleague of Jack’s, has contrib-
uted the following reminiscence:

Of all the people I have known, Jack Schwartz had the most powerful mind 
save one—John von Neumann, one of Jack’s heroes. They had many traits 
in common: a very broad range of interest in mathematics but extending 
beyond mathematics, a kind of restlessness, a deep interest in computing, 
and a desire to make the world a better place.

Jack started his research career in functional analysis; his teacher was Nelson 
Dunford. The work resulted in the monumental encyclopedic three volumes 
of Dunford-Schwartz; it contained everything known, and many things not 
yet known, on linear functional analysis. Gian-Carlo Rota, Jack’s most bril-
liant student, gives an amusing description of what writing the book was 
like, in an essay.5

Very much later when I wrote my book on functional analysis I consulted 
Dunford-Schwartz frequently. In particular I used their proof in Volume II 
of an important and deep result, Lidskii’s trace formula. When I turned to 
the bibliography, I could not find Lidskii’s paper cited there. I concluded 
that Jack had proved the trace formula independently. When pressed hard, 
Jack admitted it.

When Jack founded and joined the Computer Science Department at the 
Courant Institute he revealed that when he came to the Mathematics Depart-
ment at Courant, he looked at our Bulletin of courses and decided that he 
will in time teach each of them, and that he had carried out his plan. I asked 
him how he taught a course on a subject he knew very little about. “The 
summer before, I took out of the library the leading books on the subject 
and read them,’’ he answered.

In addition to his many deep technical works in an astonishingly wide variety 
of subjects, Jack also wrote some lighthearted essays.6 In particular, the essay 
“The Pernicious Influence of Mathematics on Science” uttered in jest but 
meant seriously, points out blind spots of thinking mathematically.7
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In order to say something about Jack’s work on W* 
algebras, (also known as von Neumann algebras) we briefly 
review some of the underlying concepts. A W* algebra is an 
algebra A of bounded operators T on a separable Hilbert 
space H such that

1.	 A is closed under the adjoint map T→T*,
2.	 A is closed in the weak topology.

Von Neumann sought a structure theorem for such alge-
bras, in effect an infinite dimensional analog of the Wedder-
burn Structure Theorem for finite dimensional rings. As basic 
components he singled out W* algebras whose centers are 
one dimensional, later called factors, and he showed that 
every W* algebra is a direct integral of factors. Factors of 
various types have been identified:

1.	T ype In, n =1,…,∞, the Kronecker product of all 
bounded operators on an n-dimensional Hilbert space with 
all bounded operators on some other Hilbert space.

2.	T ype II1 and type II∞, W* algebras not of type I that 
admit a linear functional tr with tr(ST) = tr(TS).

3.	T ype III, factors not of any of the above types.

In 1963 Jack proved that in a given decomposition, the 
set of factors of type III is Borel, von Neumann having estab-
lished this for factors of types I and II much earlier.

A W* algebra is called hyperfinite if it is generated by an 
increasing sequence of finite dimensional subalgebras. All 
hyperfinite factors of type II1 are isomorphic. Jack Schwartz 
said that a W* algebra A has “Property P” if for every linear 
operator T on the Hilbert space, the closed convex hull 
of {UTU*| U ∈ A} contains some operator that commutes 
with all of A. This property, which has shown itself to be 
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of considerable importance in the subject, turns out to be 
equivalent to hyperfiniteness and also to Connes notion of 
amenability.

In 1963 Jack found a new factor of type II1 and also one 
of type III, and using Property P, proved for each of them, 
that it was not isomorphic to either of the two factors of 
the corresponding type then known to exist. In addition to 
his discoveries about W* algebras, Jack also contributed by 
writing a book on the subject.8 

While participating in a study of Karl Marx’s classic Das 
Capital with a like-minded group in New York, Jack came to 
the conclusion that Marx had failed to confront adequately 
a contradiction between his economic analysis and empirical 
reality. Jack developed some simple economic models in an 
unavailing effort to convince the others in the group.9 This 
was the beginning of a serious study of economic theory that 
led to books published in 1962 and 1965. Jack began with a 
theory of price ratios obtained using properties of eigenvalues 
of connected positive matrices and the Brouwer fixed-point 
theorem applied to Leontief-style input and output model 
economies. This was followed by a discussion of business 
cycles, emphasizing John Nash’s suboptimal equilibria in n-
person games in the context of Keynesian analysis. A striking 
feature is a model in which aspects of classical economic 
theory and Keynesian economics are permitted to coexist and 
concerning which Jack proved that the Keynesian phenomena 
dominate. All the models in the first book are in real terms; 
money plays no role. In the second smaller book, specifically 
about money, Jack is quite dubious concerning the monetarist 
theories of Milton Friedman then in vogue.10

In the mid-1960s Jack began to devote his creative ener-
gies to the emerging field of computer science. In 1969 he 
founded the Computer Science Department at New York 
University under the umbrella of the Courant Institute of 
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Mathematical Sciences. He served as chair of the department 
until 1977. Jack’s directorship of the Information Science 
and Technology Office at the Defense Advanced Research 
Projects Agency during his two-year leave (1987-1989) from 
NYU enabled him to seriously influence the direction of 
research in computer science in the United States. 

In Jack’s own computer science research his initial focus 
was on questions of computer architecture and program-
ming issues in connection with parallel computation. At a 
time when the needed technology still lay at least a decade 
in the future, he wrote a paper on the architecture of what 
he called Athena-class computers. These machines were 
to have a large number of separate processors operating 
independently but all having access to a common memory. 
Currently this architecture is well known under the name 
shared-memory MIMD (Multiple Instruction stream, Multiple 
Data stream).11 

In 1978 Jack’s interest returned to models of parallel 
computation. This time Jack took as a given that very large 
processing systems (involving thousands of identical proces-
sors) were not only feasible but would become available in 
short order, and that algorithms for such systems, as well 
as programming languages for them, had to be devised. In 
the ambitious paper he wrote12 Jack focused on a particular 
architecture for the interconnection of a large number of 
processors: the perfect shuffle, so-called because it resembles 
the rearrangement of a deck of cards after half of it is inserted 
exactly within the other half. The advantages of this intercon-
nection network for certain combinatorial algorithms had 
been known for some time. Jack showed how it could be 
used in numerous other areas of application (including set 
manipulation, matrix inversion and other linear algebra prob-
lems, and graph manipulation) and proposed programming 
constructs whose primitives reflected the basic operations of 
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the architecture. In the same paper he discussed some of 
the physical details of a proposed ultracomputer containing 
16,000 processors. This paper was the basis for the work of 
the NYU ultracomputer project, in which appropriate soft-
ware and hardware was developed over the following decade 
under the guidance of Jack, together with Allan Gottlieb.

While visiting IBM, Jack worked with the IBM researchers 
John Cocke and Frances (“Fran”) Allen in connection with 
the work on program optimization that they had pioneered. 
Later Jack and Fran married, Jack’s marriage to Sandra 
having ended in divorce. Although Jack’s second marriage 
was also eventually terminated by divorce, the two remained 
friends and admirers of each other’s achievements. Jack’s own 
interest in programming languages was triggered by working 
with Allen and Cocke. He collaborated with John Cocke on 
an encyclopedic treatment of concepts and techniques for 
compiler construction that, although published only as a 
Courant Institute Report, was quite influential. It contained 
the first systematic survey of parsing techniques, as well as 
code-generation algorithms for imperative and functional 
languages, and more recondite pattern-matching techniques. 
Far more important were optimization techniques that were 
truly seminal to the field of compiler development and its 
history. In addition to new techniques, a lasting framework 
for the subject was created. Compiler optimization as a 
subject of study began with this report, and as a result the 
Courant Institute became the place where the most important 
optimization techniques, and students, were produced. This 
work has been directly present in virtually every compiler 
ever written since, usually in much the way first laid out in 
the Cocke-Schwartz report.13

The algorithms developed at IBM for global data-flow 
analysis and program decomposition (interval analysis) have a 
natural set-theoretic expression, but these algorithms proved 
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to be hard to implement in the programming language of 
choice at the time, namely Fortran. This led Jack to embark 
on a large effort to design and implement his programming 
language SETL based on set-theory, and to prove its usefulness 
as a specification language by recasting numerous algorithms 
in various areas of computer science into this language.14 
SETL underwent several implementations, and design 
improvements with substantial contributions from Robert 
Dewar and others.15 The central feature of the language is 
the use of sets and mappings over arbitrary domains, as well 
as the use of universally and existentially quantified expres-
sions to describe predicates and iterations over composite 
structures. This set-theoretic core is embedded in a conven-
tional imperative language with familiar control structures, 
subprograms, recursion, and global state in order to make 
the language widely accessible. Conservative for its time, it 
did not include higher-order functions. The final version of 
the language incorporated a backtracking mechanism (with 
success and fail primitives) as well as database operations. 
The popular scripting and general purpose programming 
language Python is understood to be a descendent of SETL, 
and its lineage is apparent in Python’s popularization of the 
use of mappings over arbitrary domains.

Jack saw SETL in pragmatic terms as an executable speci-
fication language whose primary goals were conciseness and 
clarity, and where efficiency was to be obtained by means 
of a separate step of translation into a lower language. The 
spectacular inefficiency of the initial implementation reflected 
this approach. This led Jack to subsidiary research endeavors 
into optimization techniques and global program transfor-
mations.16 Jack also introduced another fruitful research 
thread by suggesting the use of finite difference techniques 
to transform algorithms that manipulate sets into algorithms 
that perform pointwise operations on them.17
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The preliminary material on sets and mappings in Linear 
Operators goes much further into abstract set theory than 
might have been expected; for example, there are proofs 
of Zorn’s lemma and of Zermelo’s well ordering theorem. 
This attests to Jack’s appreciation of the significance of the 
expressibility of mathematical discourse in the language of set 
theory. As the work of Descartes and Fermat had shown that 
propositions of Euclid’s geometry could be translated into 
the language of algebra, so the efforts of Russell, Zermelo, 
and von Neumann showed that propositions of the various 
branches of mathematics could be translated into the language 
of set theory. Jack had a grand fourfold vision of the role 
that set theory could play in computer science.

1. He imagined a robust set-theory based language in which mathematicians 
could comfortably express their proofs.

2. There was to be a computer program to automatically verify the correct-
ness of such proofs.

3. To be included in the theorems that could be so verified were theorems 
whose validity implied the correctness of specified computer programs. In 
order to expedite this connection these programs should be written in a 
programming language itself based on set theory.

4. Formalized set theory itself being undecidable, one should seek substantial 
fragments of the language that could be dealt with algorithmically, hopefully 
enabling shortcuts in proofs being verified.

Of course the SETL project can be seen as being part of 
the framework of this vision. But it was the fourth item that 
provided the richest opportunities for significant research. 
Jack found a clue in the work of Heinrich Behmann who 
had provided an algorithm for the decision problem of 
second-order monadic predicate calculus. Jack saw that 
these methods could be extended to yield algorithms for 



		  13j a c o b  t h e o d o r e  s c h w a r t z

certain propositions involving finite chains of the member-
ship relation: x1∈ x2 ∈… ∈ xn. Over a period of decades, 
working with a group of collaborators, all but one from 
Italy, who first were students at New York University and 
then became distinguished scientists in their own right, a 
surprising collection of nontrivial mathematics was found 
to lie within the scope of decidable fragments of set theory. 
This included the fundamental properties of von Neumann 
ordinal numbers.18

With some of these same Italian researchers a computer 
program was designed and implemented (at least as a proto-
type) that could verify the correctness of mathematical proofs 
presented in the language of set theory. Jack proposed to 
use this verifier to certify the correctness of a substantial 
body of the fundamentals of mathematical analysis. This 
was to include proofs of the basic properties of the real and 
complex number systems defined in set-theoretic terms, the 
fundamental properties of limits, continuity and the differen-
tial and integral calculus, and was to culminate in a proof of 
the Cauchy Integral Theorem of complex analysis. Although 
this goal has been accomplished for the bulk of elementary 
analysis, Jack died before the project was complete; a post-
humous publication will include a progress report.19

In the early 1980s Jack’s interests turned to robotics, and 
he created the Robotics Laboratory at NYU. In his usual 
comprehensive approach, he was interested not only in theo-
retical issues in motion planning, image recognition, and 
the like but also in pragmatic issues in robot programming 
and machine manufacturing. His work on motion planning, 
with Micha Sharir, led to a series of papers under the title 
“The Piano Movers’ Problem” that founded a new field of 
algorithmic research. The piano movers’ problem in its full 
generality can be described as follows: 



14	 BIOGRA      P HICAL      MEMOIRS     

Given an open subset U of n-dimensional Euclidean space, and two compact 
subsets C0 and C1 of U, where C1 can be obtained from C0 by a continuous 
motion, is it possible to move C0 to C1 while remaining entirely within U. 

They first examined the problem of two-dimensional rigid 
polygonal bodies moving amidst polygonal barriers. They 
then reformulated the general problem as one in algebraic 
topology, and used Collins’s decomposition and Tarski’s deci-
sion procedure for the first order theory of real numbers to 
derive complexity bounds for the general problem. Among 
other results they showed that the problem for algebraic 
bodies having a fixed number of degrees of freedom can 
be solved in time polynomial in the number of geometric 
constraints present in the problem. The problem remains 
exponential in the number of degrees of freedom of these 
bodies. A subsequent paper tackled the simpler problem of 
two-dimensional circular bodies and polygonal barriers, and 
presented a O(N3) algorithm for two circles moving within N 
walls. There was further work on complexity in which John 
Hopcroft also collaborated.20

In addition to the Steele Prize from the American Math-
ematical Society for Linear Operators already mentioned and 
his election to the National Academy of Sciences in 1976, Jack 
Schwartz was the recipient of a number of honors: He was a 
Sloan Foundation fellow during 1961-1962. He received the 
Wilbur Cross Medal from Yale University and the Townsend 
Harris Medal from his Alma Mater, City College. He was 
awarded the Mayor’s Medal for Contributions to Science and 
Technology, New York City, and was elected to the American 
Academy of Arts and Sciences. He had about 30 doctoral 
students in mathematics and computer science.

Jack Schwartz died on March 2, 2009, of metastasized pros-
tate cancer that had been kept at bay by years of treatment. 
Jack didn’t permit the disease to stop him from continuing 
to work up to almost the very end. He is survived by his wife 



		  15j a c o b  t h e o d o r e  s c h w a r t z

of 23 years, Diana Robinson Schwartz; sister, Judith; two 
daughters; and two grandchildren.
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